Bayesian IRT for the Masses

S. McKay Curtis

University of Washington
Department of Statistics

August 30, 2010
Acknowledgments

Disclaimers?

- Funded in part by Grant R13AG030995-01A1 from the National Institute on Aging
- The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.
Outline

1. Bayesian Inference
2. Item Response Theory
3. Bayesian Item Response Theory
4. Longitudinal Bayesian Item Response Theory
Outline

1. Bayesian Inference
2. Item Response Theory
3. Bayesian Item Response Theory
4. Longitudinal Bayesian Item Response Theory
What is Probability?

Consider the following statements. . .

1. The probability of a coin toss landing heads is $\frac{1}{2}$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.

2. The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am

3. The probability that James Madison wrote the disputed Federalist papers is > 0.999. Mosteller and Wallace (1964).

What is Probability?

Consider the following statements...
What is Probability?

Consider the following statements . . .

1. The probability of a coin toss landing heads is $1/2$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.

2. The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. *Intrade odds, 26 Aug 2010, 10:50am*

3. The probability that James Madison wrote the disputed Federalist papers is >0.999. *Mosteller and Wallace (1964)*

What is Probability?

Consider the following statements. . .

1. The probability of a coin toss landing heads is 1/2. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.

2. The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am
What is Probability?

Consider the following statements. . .

1. The probability of a coin toss landing heads is $\frac{1}{2}$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.

2. The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am

3. The probability that James Madison wrote the disputed Federalist papers is > 0.999. Mosteller and Wallace (1964).
What is Probability?

Consider the following statements . . .

1. The probability of a coin toss landing heads is $1/2$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.

2. The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am

3. The probability that James Madison wrote the disputed Federalist papers is > 0.999. Mosteller and Wallace (1964).

4. The probability that God exists is 0.67. Stephen D. Unwin, _The Probability of God: A Simple Calculation that Proves the Ultimate Truth_.

What is Probability?
What is Probability?

$P(A_1) = 0.15$
What is Probability?

\[P(A_2) = 0.25 \]
What is Probability?

\[P(A_3) = 0.25 \]
What is Probability?

\[P(A_4) = 0.15 \]
What is Probability?

\[P(A_5) = 0.1 \]
What is Probability?

\[P(A_6) = 0.1 \]
What is Probability?

\[P(\Omega) = 1 \]
What is Probability?

\[P(\emptyset) = 0 \]
What is probability?

Technical definition

Definition: Probability

Probability is a set function $P(\cdot)$ defined on subsets of a space Ω that satisfies the following properties:

1. $P(\Omega) = 1$

2. For a subset $A \subset \Omega$, $P(A) \geq 0$

3. If $A_1, A_2, ...$ are disjoint subsets of Ω then
 $$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$
What is probability?
Technical definition

Definition: Probability

Probability is a set function $P(\cdot)$ defined on subsets of a space Ω that satisfies the following properties:

1. $P(\Omega) = 1$
2. For a subset $A \subset \Omega$, $P(A) \geq 0$
3. If A_1, A_2, \ldots are disjoint subsets of Ω then

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$
What should we use probability for?
Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?”
What should we use probability for?

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?”

- A frequentist statistician¹...

¹ Obviously, this is just a caricature.
² And so is this.
What should we use probability for?

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?"

- A frequentist statistician\(^1\)...

\(^1\)Obviously, this is just a caricature.
What should we use probability for?
Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?”

- A frequentist statistician\(^1\) . . .
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).

\(^1\)Obviously, this is just a caricature.
What should we use probability for?
Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?”

- A frequentist statistician\(^1\)...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name “frequentist”)—of some process that generates data.

\(^1\)Obviously, this is just a caricature.
What should we use probability for?
Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?”

- A frequentist statistician\(^1\)
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name “frequentist”)—of some process that generates data.

- A Bayesian statistician\(^2\)

\(^1\)Obviously, this is just a caricature.
\(^2\)And so is this.
What should we use probability for?
Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?”

- A frequentist statistician\(^1\)...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name “frequentist”)—of some process that generates data.

- A Bayesian statistician\(^2\)...

\(^1\)Obviously, this is just a caricature.
\(^2\)And so is this.
What should we use probability for?
Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is “What should we use probability for?”

- A frequentist statistician\(^1\)...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name “frequentist”)—of some process that generates data.

- A Bayesian statistician\(^2\)...
 - will use probability to model uncertainty from any source (e.g., that a coin toss lands heads or that Madison wrote the disputed Federalist papers.)

\(^1\)Obviously, this is just a caricature.
\(^2\)And so is this.
Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings

Bayesian IRT for the Masses
August 30, 2010 10 / 47
Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two “marketplace” sellers for the same price and in the same condition.

<table>
<thead>
<tr>
<th>Name</th>
<th>Positive Reviews</th>
<th>Total Reviews</th>
<th>Percent Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>29</td>
<td>30</td>
<td>96.7%</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>5</td>
<td>5</td>
<td>100%</td>
</tr>
</tbody>
</table>

LittleNBooks has a higher rating, but...

LittleNBooks only has five ratings.
Bayesian vs. Frequentist inference in practice

An example using Amazon.com seller ratings

- You want to buy a used book on Amazon.com
- Your book is being sold by two “marketplace” sellers for the same price and in the same condition.

Marketplace sellers

<table>
<thead>
<tr>
<th>Name</th>
<th>Positive Reviews</th>
<th>Total Reviews</th>
<th>Percent Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>29</td>
<td>30</td>
<td>96.7%</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>5</td>
<td>5</td>
<td>100%</td>
</tr>
</tbody>
</table>
Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two “marketplace” sellers for the same price and in the same condition.

<table>
<thead>
<tr>
<th>Marketplace sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>BigNBooks</td>
</tr>
<tr>
<td>LittleNBooks</td>
</tr>
</tbody>
</table>

- Which book seller should you choose?
Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two “marketplace” sellers for the same price and in the same condition.

Marketplace sellers

<table>
<thead>
<tr>
<th>Name</th>
<th>Positive Reviews</th>
<th>Total Reviews</th>
<th>Percent Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>29</td>
<td>30</td>
<td>96.7%</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>5</td>
<td>5</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Which book seller should you choose?
 - LittleNBooks has a higher rating, but...
Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two “marketplace” sellers for the same price and in the same condition.

<table>
<thead>
<tr>
<th>Marketplace sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>BigNBooks</td>
</tr>
<tr>
<td>LittleNBooks</td>
</tr>
</tbody>
</table>

- Which book seller should you choose?
 - LittleNBooks has a higher rating, but...
 - LittleNBooks only has five ratings.
Reviewers’ ratings = repeatable event
Bayesian vs. Frequentist inference in practice

A mathematical model for bookseller ratings

- Reviewers’ ratings = repeatable event
 - Frequentists ♥ probability.

\[Y(B)_{\ell} = \begin{cases}
1 & \text{if review positive} \\
0 & \text{if review negative}
\end{cases} \]

\[P(Y(B)_{\ell} = 1 | \theta_B) = \theta_B \]

\[Y(L)_{\ell} = \begin{cases}
1 & \text{if review positive} \\
0 & \text{if review negative}
\end{cases} \]

\[P(Y(L)_{\ell} = 1 | \theta_L) = \theta_L \]
Bayesian vs. Frequentist inference in practice
A mathematical model for bookseller ratings

- Reviewers’ ratings = repeatable event
 - Frequentists ♦ probability.
 - Bayesians ♦ probability.
Bayesian vs. Frequentist inference in practice

A mathematical model for bookseller ratings

- Reviewers’ ratings = repeatable event
 - Frequentists ♦ probability.
 - Bayesians ♦ probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).
Bayesian vs. Frequentist inference in practice

A mathematical model for bookseller ratings

- Reviewers’ ratings = repeatable event
 - Frequentists ♦ probability.
 - Bayesians ♦ probability.

- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).
 - $Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$
Bayesian vs. Frequentist inference in practice
A mathematical model for bookseller ratings

- Reviewers’ ratings = repeatable event
 - Frequentists ♦ probability.
 - Bayesians ♦ probability.

- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).
 - $Y_i^{(B)} = \begin{cases}
 1 & \text{if review positive} \\
 0 & \text{if review negative}
\end{cases}$
 - $P(Y_i^{(B)} = 1|\theta_B) = \theta_B$
Bayesian vs. Frequentist inference in practice

A mathematical model for bookseller ratings

- Reviewers’ ratings = repeatable event
 - Frequentists \heartsuit probability.
 - Bayesians \heartsuit probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).
 - $Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$
 - $P(Y_i^{(B)} = 1 | \theta_B) = \theta_B$
 - $Y_i^{(L)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$
Bayesian vs. Frequentist inference in practice

A mathematical model for bookseller ratings

- Reviewers’ ratings = repeatable event
 - Frequentists ♥ probability.
 - Bayesians ♥ probability.

A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).

\[
\begin{align*}
Y_i^{(B)} &= \begin{cases}
1 & \text{if review positive} \\
0 & \text{if review negative}
\end{cases} \\
P(Y_i^{(B)} = 1|\theta_B) &= \theta_B \\
Y_i^{(L)} &= \begin{cases}
1 & \text{if review positive} \\
0 & \text{if review negative}
\end{cases} \\
P(Y_i^{(L)} = 1|\theta_L) &= \theta_L
\end{align*}
\]
Bayesian vs. Frequentist inference in practice

The likelihood

- Assume $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = \mathbf{Y}^{(B)}$ and $Y_1^{(L)}, \ldots, Y_5^{(L)} = \mathbf{Y}^{(L)}$
- independent, then
Bayesian vs. Frequentist inference in practice

The likelihood

- Assume $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = Y^{(B)}$ and $Y_1^{(L)}, \ldots, Y_5^{(L)} = Y^{(L)}$ independent, then

$$
P(Y_1^{(B)} = 1, \ldots, Y_{29}^{(B)} = 1, Y_{30}^{(B)} = 0 | \theta_B) = P(Y^{(B)} | \theta_B)
= \theta_B^{29} (1 - \theta_B)
$$
Bayesian vs. Frequentist inference in practice

The likelihood

- Assume \(Y_1^{(B)}, \ldots, Y_{30}^{(B)} = Y^{(B)} \) and \(Y_1^{(L)}, \ldots, Y_5^{(L)} = Y^{(L)} \) independent, then

\[
P(Y_1^{(B)} = 1, \ldots, Y_{29}^{(B)} = 1, Y_{30}^{(B)} = 0 | \theta_B) = P(Y^{(B)} | \theta_B) \\
= \theta_B^{29}(1 - \theta_B)
\]

- \[
P(Y_1^{(L)} = 1, \ldots, Y_5^{(L)} = 1 | \theta_L) = P(Y^{(L)} | \theta_L) \\
= \theta_L^5
\]
Bayesian vs. Frequentist inference in practice

Frequentist inference

- θ_B and θ_L are fixed, unknown constants \rightarrow probability
Bayesian vs. Frequentist inference in practice

Frequentist inference

- θ_B and θ_L are fixed, unknown constants \rightarrow probability
- MLE: $\hat{\theta} = \frac{\# \text{ postive reviews}}{\text{total } \# \text{ reviews}}$
Bayesian vs. Frequentist inference in practice

Frequentist inference

- θ_B and θ_L are fixed, unknown constants \rightarrow probability
- MLE: $\hat{\theta} = \frac{\text{# positive reviews}}{\text{total # reviews}}$
- Confidence Interval: $\hat{\theta} \pm z_{\alpha/2} \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}$
Bayesian vs. Frequentist inference in practice

Frequentist inference

- θ_B and θ_L are fixed, unknown constants \rightarrow probability
- MLE: $\hat{\theta} = \frac{\# \text{ positive reviews}}{\text{total \# reviews}}$
- Confidence Interval: $\hat{\theta} \pm z_{\alpha/2} \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}$

Frequentist inference

<table>
<thead>
<tr>
<th>Seller</th>
<th>MLE</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>0.967</td>
<td>(0.90, 1.03)</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>1.000</td>
<td>(1.00, 1.00)</td>
</tr>
</tbody>
</table>
Bayesian vs. Frequentist inference in practice

Bayesian inference

- θ_B and θ_L are fixed, unknown constants.
Bayesian vs. Frequentist inference in practice

Bayesian inference

- θ_B and θ_L are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L.
Bayesian vs. Frequentist inference in practice

Bayesian inference

- θ_B and θ_L are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L.
- A Bayesian must choose prior distributions (often shortened to “priors”) for θ_B and θ_L.
Bayesian vs. Frequentist inference in practice

Bayesian inference

- θ_B and θ_L are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L.
- A Bayesian must choose prior distributions (often shortened to “priors”) for θ_B and θ_L.
- For this problem $p(\theta_B) = p(\theta_L) = \text{Unif}(0, 1)$.
\(\theta_B \) and \(\theta_L \) are fixed, unknown constants.

A Bayesian uses probability to represent uncertainty about \(\theta_B \) and \(\theta_L \).

A Bayesian must choose prior distributions (often shortened to “priors”) for \(\theta_B \) and \(\theta_L \).

For this problem
\[
p(\theta_B) = p(\theta_L) = \text{Unif}(0, 1).
\]
Bayesian vs. Frequentist inference in practice

The posterior distribution

Consider θ_B (things are similar for θ_L)

- $p(\theta_B)$ represents our uncertainty about θ_B before observing the data.
 The Bayesian wants

$$p(\theta_B|Y^{(B)})$$

the posterior distribution.
Bayesian vs. Frequentist inference in practice

The posterior distribution

Consider θ_B (things are similar for θ_L)

- $p(\theta_B)$ represents our uncertainty about θ_B before observing the data.

- The Bayesian wants
 \[p(\theta_B | Y^{(B)}) \]
 the posterior distribution.

- The posterior distribution represents our uncertainty about θ_B after observing the data.
Bayesian vs. Frequentist inference in practice

Bayes Theorem

\[p(\theta) \]
Bayes Theorem

\[p(\theta) \]

\[P(Y|\theta) \]
Bayesian vs. Frequentist inference in practice

Bayes Theorem

\[p(\theta) \]

\[P(Y|\theta) \]

Bayes Theorem
Bayesian vs. Frequentist inference in practice

Bayes Theorem

\[
p(\theta | Y) = \frac{p(\theta) P(Y | \theta)}{P(Y)}
\]

S. McKay Curtis (UW Dept. of Stat.)
Bayesian IRT for the Masses
August 30, 2010 17 / 47
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>$\text{Unif}(0, 1)$</td>
<td>$\theta_B(1 - \theta_L)$</td>
<td>$\text{Beta}(29 + 1, 1 + 1)$</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>$\text{Unif}(0, 1)$</td>
<td>$\theta_L(1 - \theta_L)$</td>
<td>$\text{Beta}(5 + 1, 0 + 1)$</td>
</tr>
</tbody>
</table>
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>Unif(0, 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta^2_B(1 - \theta_L)^1$</td>
<td>$\text{Beta}(29 + 1, 1 + 1)$</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_L(1 - \theta_L)^0$</td>
<td>$\text{Beta}(5 + 1, 0 + 1)$</td>
</tr>
</tbody>
</table>
Posterior distributions

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_B^{29}(1 - \theta_L)^1$</td>
<td>Beta(29 + 1, 1 + 1)</td>
</tr>
</tbody>
</table>
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_B^{29}(1 - \theta_L)^1$</td>
<td>Beta($29 + 1$, $1 + 1$)</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_L^5(1 - \theta_L)^0$</td>
<td>Bet$a(5 + 1$, $0 + 1$)</td>
</tr>
</tbody>
</table>
Posterior distributions

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_B^{29}(1 - \theta_L)^1$</td>
<td>Beta($29 + 1, 1 + 1$)</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>Unif(0, 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_B^{29}(1 - \theta_L)^1$</td>
<td>Beta($29 + 1, 1 + 1$)</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_L^5(1 - \theta_L)^0$</td>
<td></td>
</tr>
</tbody>
</table>
Posterior distributions

<table>
<thead>
<tr>
<th>Seller</th>
<th>Prior</th>
<th>Likelihood</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_B^{29}(1 - \theta_L)^1$</td>
<td>Beta(29 + 1, 1 + 1)</td>
</tr>
<tr>
<td>LittleNBooks</td>
<td>Unif(0, 1)</td>
<td>$\theta_L^5(1 - \theta_L)^0$</td>
<td>Beta(5 + 1, 0 + 1)</td>
</tr>
</tbody>
</table>
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L
Bayesian vs. Frequentist inference in practice

Posterior distributions for θ_B and θ_L
Bayesian vs. Frequentist inference in practice

Comparing the estimates

- Bayesian vs. Frequentist inference in practice
- Comparing the estimates

[Graph showing comparison of estimates for LittleNBooks and BigNBooks]
Outline

1. Bayesian Inference
2. Item Response Theory
3. Bayesian Item Response Theory
4. Longitudinal Bayesian Item Response Theory
Thinking about tests

- Test takers
- Test items
Thinking about tests

- Test takers
 - Test takers have different levels of ability.
- Test items
Thinking about tests

- Test takers
 - Test takers have different levels of ability.

- Test items
 - Some test items are more difficult than others.
Thinking about tests

- Test takers
 - Test takers have different levels of ability.

- Test items
 - Some test items are more difficult than others.
 - Some test items are better (more “discriminating”) than others.
A mathematical model for tests
Defining Greek symbols

- Consider a test with p items ($j = 1, \ldots, p$).
Consider a test with p items ($j = 1, \ldots, p$).
Let δ_j be the difficulty of item j.

Greek symbols:
- α_j: discrimination of item j
- Y_j: 1 if an individual endorses the j-th item, 0 otherwise
- θ: ability of an individual test taker
A mathematical model for tests

Defining Greek symbols

- Consider a test with p items ($j = 1, \ldots, p$).
- Let δ_j be the difficulty of item j.
- Let α_j be the discrimination of item j.
A mathematical model for tests

Defining Greek symbols

- Consider a test with \(p \) items \((j = 1, \ldots, p)\).
- Let \(\delta_j \) be the difficulty of item \(j \).
- Let \(\alpha_j \) be the discrimination of item \(j \).
- Let \(Y_j = \begin{cases} 1 & \text{if an individual endorses } j\text{-th item} \\ 0 & \text{otherwise} \end{cases} \)
Consider a test with \(p \) items \((j = 1, \ldots, p)\).

Let \(\delta_j \) be the difficulty of item \(j \).

Let \(\alpha_j \) be the discrimination of item \(j \).

Let

\[
Y_j = \begin{cases}
1 & \text{if an individual endorses } j\text{-th item} \\
0 & \text{otherwise}
\end{cases}
\]

Let \(\theta \) be the ability of an individual test taker.
A mathematical model for tests

The probability of success on j^{th} item
A mathematical model for tests

The probability of success on j^{th} item

$$P(Y_j = 1|\theta) = \frac{1}{1 + e^{-\alpha_j(\theta - \delta_j)}}$$
A mathematical model for tests

The probability of success on j^{th} item

\[
P(Y_j = 1|\theta) = \frac{1}{1 + e^{-\alpha_j(\theta - \delta_j)}}
\]

\[
P(Y_j = 0|\theta) = 1 - \frac{1}{1 + e^{-\alpha_j(\theta - \delta_j)}}
\]
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)

$$P(Y=1|\theta) = \frac{1}{1 + e^{-\alpha(\theta - \delta)}}$$
Visualizing the model

An item with “average” difficulty $\delta_j = 0.0$ ($\alpha_j = 1.5$)

\[
P(Y=1|\theta) = \frac{1}{1 + e^{-\alpha (\theta - \delta)}}
\]
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

$$P(Y = 1 | \theta) = \frac{1}{1 + e^{-\alpha (\theta - \delta)}}$$

$\theta = 2$
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model
An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model
An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

\[P(Y=1|\theta) = \frac{1}{1 + e^{-\alpha(\theta - \delta)}} \]
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

\[
\frac{1}{1 + e^{-\alpha_j(\theta - \delta_j)}}
\]
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

\[P(Y=1|\theta) = \frac{1}{1 + e^{-\alpha(\theta - \delta)}} \]
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model
An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5 \ (\alpha_j = 1.5)$
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

$$\theta = \frac{1}{1 + e^{-\alpha_j (\theta - \delta_j)}}$$
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)
Visualizing the model

An item with average discrimination \(\alpha_j = 1.5 \) (\(\delta_j = 0.0 \))
Visualizing the model

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)
Visualizing the model

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)
Visualizing the model

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

$$P(Y=1|\theta) = \frac{1}{1 + e^{-\alpha(\theta - \delta)}}$$
Visualizing the model

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)
Visualizing the model
An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

\[
\frac{1}{1 + e^{-\alpha (\theta - \delta)}}
\]
Visualizing the model

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)
Visualizing the model

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

\[
\frac{1}{1 + e^{-\alpha (\theta - \delta)}}
\]
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

\[
P(Y = 1 | \theta) = \frac{1}{1 + e^{-\alpha_j (\theta - \delta_j)}}
\]
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ $(\delta_j = 0.0)$
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)
Visualizing the model

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Visualizing the model

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)
Information
A benefit of using an IRT model

- Loosely: Information is measure of how precisely we can estimate some quantity of interest (like θ).
Information

A benefit of using an IRT model

• Loosely: Information is measure of how precisely we can estimate some quantity of interest (like θ).
• Precisely: If $\hat{\theta}$ is the MLE of θ, then

$$I(\theta) = \frac{1}{V_\theta(\hat{\theta})}$$

where $V_\theta(\hat{\theta})$ is the (asymptotic) variance of the MLE $\hat{\theta}$.

Information

Item information curves

\[I(\theta) \]

\[P(Y = 1 | \theta) \]

\[\alpha = 1 \]

\[\delta = 0 \]
Information

Item information curves

\[I(\theta) \]

\[\alpha = 2 \]

\[\delta = 0 \]
Information

Item information curves

\[I(\theta) = \alpha = 3, \delta = 0 \]

\[P(Y=1|\theta) \]
Information

Item information curves

\[I(\theta) \]

\[\frac{\alpha}{\delta} = 1 \]

\[\delta = 2 \]

\[P(Y = 1 | \theta) \]
Information

Item information curves

\[I(\theta) \]

\[\theta \]

\[\alpha = 2 \]

\[\delta = 2 \]

\[P(Y=1|\theta) \]
Information

Item information curves

\[I(\theta) \]

\[ð = 2 \]

\[\alpha = 3 \]

\[P(Y = 1 | \theta) \]
Information
Item information curves
Information

Item information curves

\[I(\theta) \]

\[\alpha = 2 \]
\[\delta = -2 \]
Information

Item information curves

\[\alpha = 3 \]
\[\delta = -2 \]
Information for a test of p items:

$$I(\theta) = \sum_{j=1}^{p} I_j(\theta)$$
Information

Test information curves

\[I(\theta) \]

\[\theta \]

\[-4 \quad -2 \quad 0 \quad 2 \quad 4 \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \]
Information

Test information curves
Information

Test information curves

\[
\begin{array}{c|c|c|c|c|c|c|c}
\theta & -4 & -2 & 0 & 2 & 4 \\
I(\theta) & 0.0 & 0.2 & 0.4 & 0.6 & 1.0 & 1.2
\end{array}
\]
Information

Test information curves

\[I(\theta) \]

\[\begin{align*}
\theta & \quad I(\theta) \\
-4 & \quad 0.0 \\
-2 & \quad 0.2 \\
0 & \quad 0.4 \\
2 & \quad 0.6 \\
4 & \quad 0.8 \\
\end{align*} \]
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
 - $\theta_i, \ i = 1, \ldots, n$
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
 - θ_i, $i = 1, \ldots, n$
 - $(Y_{i1}, \ldots, Y_{ip}) = Y_i$
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
 - $\theta_i, i = 1, \ldots, n$
 - $(Y_{i1}, \ldots, Y_{ip}) = Y_i$
 - $P(Y_i|\theta_i) = P(Y_{i1} = y_{i1}, \ldots, Y_{ip} = y_{ip}|\theta_i)$

 $= P(Y_{i1} = y_{i1}|\theta_i) \times \cdots \times P(Y_{ip} = y_{ip}|\theta_i)$
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
 - θ_i, $i = 1, \ldots, n$
 - $(Y_{i1}, \ldots, Y_{ip}) = Y_i$

$$P(Y_i | \theta_i) = P(Y_{i1} = y_{i1}, \ldots, Y_{ip} = y_{ip} | \theta_i)$$
$$= P(Y_{i1} = y_{i1} | \theta_i) \times \cdots \times P(Y_{ip} = y_{ip} | \theta_i)$$

- For a sample of n individuals, we have
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
 - θ_i, $i = 1, \ldots, n$
 - $(Y_{i1}, \ldots, Y_{ip}) = Y_i$

$$P(Y_i|\theta_i) = P(Y_{i1} = y_{i1}, \ldots, Y_{ip} = y_{ip}|\theta_i)$$

$$= P(Y_{i1} = y_{i1}|\theta_i) \times \cdots \times P(Y_{ip} = y_{ip}|\theta_i)$$

- For a sample of n individuals, we have
 - Y_1, \ldots, Y_n
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
 - θ_i, $i = 1, \ldots, n$
 - $(Y_{i1}, \ldots, Y_{ip}) = Y_i$
 -
 $$P(Y_i|\theta_i) = P(Y_{i1} = y_{i1}, \ldots, Y_{ip} = y_{ip}|\theta_i)$$
 $$= P(Y_{i1} = y_{i1}|\theta_i) \times \cdots \times P(Y_{ip} = y_{ip}|\theta_i)$$

- For a sample of n individuals, we have
 - Y_1, \ldots, Y_n
 -
 $$P(Y_1, \ldots, Y_n|\theta_1, \ldots, \theta_n) = P(Y_1|\theta_1) \times \cdots \times P(Y_n|\theta_n)$$
IRT for a sample of n individuals

The likelihood

- For the i^{th} individual, we have
 - $\theta_i, \; i = 1, \ldots, n$
 - $(Y_{i1}, \ldots, Y_{ip}) = Y_i$

$$P(Y_i|\theta_i) = P(Y_{i1} = y_{i1}, \ldots, Y_{ip} = y_{ip}|\theta_i) = P(Y_{i1} = y_{i1}|\theta_i) \times \cdots \times P(Y_{ip} = y_{ip}|\theta_i)$$

- For a sample of n individuals, we have
 - Y_1, \ldots, Y_n

$$P(Y_1, \ldots, Y_n|\theta_1, \ldots, \theta_n) = P(Y_1|\theta_1) \times \cdots \times P(Y_n|\theta_n)$$

- Called the “likelihood.”
IRT for a sample of n individuals

Estimating model parameters

- Our model has many parameters: $(\theta_1, \ldots, \theta_n) = \theta$, $(\alpha_1, \ldots, \alpha_p) = \alpha$, and $(\delta_1, \ldots, \delta_p) = \delta$.
IRT for a sample of \(n \) individuals

Estimating model parameters

- Our model has many parameters: \((\theta_1, \ldots, \theta_n) = \theta, (\alpha_1, \ldots, \alpha_p) = \alpha,\) and \((\delta_1, \ldots, \delta_p) = \delta.\)

- Likelihood-based estimates: Joint maximum likelihood, marginal maximum likelihood.
IRT for a sample of n individuals

Estimating model parameters

- Our model has many parameters: $(\theta_1, \ldots, \theta_n) = \theta$, $(\alpha_1, \ldots, \alpha_p) = \alpha$, and $(\delta_1, \ldots, \delta_p) = \delta$.
- Likelihood-based estimates: Joint maximum likelihood, marginal maximum likelihood.
- Nonlikelihood-based estimates: Weighted least squares (e.g., in Mplus).
IRT Assumptions

- Unidimensionality.

Example violation: Math word problems

Example violation: Testlets

More sophisticated models are often needed to correct for violations of these assumptions.
IRT Assumptions

- Unidimensionality.
 - Example violation: Math word problems

More sophisticated models are often needed to correct for violations of these assumptions.
IRT Assumptions

- Unidimensionality.
 - Example violation: Math word problems
- Local independence.
IRT Assumptions

- Unidimensionality.
 - Example violation: Math word problems
- Local independence.
 - Example violation: Testlets
Unidimensionality.
 ▶ Example violation: Math word problems

Local independence.
 ▶ Example violation: Testlets

More sophisticated models are often needed to correct for violations of these assumptions.
Outline

1. Bayesian Inference
2. Item Response Theory
3. Bayesian Item Response Theory
4. Longitudinal Bayesian Item Response Theory
Bayesian inference

Recap

- For Bayesian inference, we need

\[p(\theta) \]
\[P(Y|\theta) \]

Bayes Theorem

\[p(\theta|Y) \]
Bayesian inference

Recap

• For Bayesian inference, we need
 1. Likelihood
For Bayesian inference, we need:

1. Likelihood
2. Priors for all unknown parameters
Priors for IRT parameters

- $\theta_i \sim N(0, 1)$
Priors for IRT parameters

- $\theta_i \sim N(0, 1)$
- $\delta_j \sim N(m_\delta, s_\delta^2)$
Priors for IRT parameters

- $\theta_i \sim \mathcal{N}(0, 1)$
- $\delta_j \sim \mathcal{N}(m_\delta, s_\delta^2)$
- $\alpha_j \sim \mathcal{N}(0, \infty) \left(m_\alpha, s_\delta^2\right)$

Values of $m_\alpha, s_\alpha^2, m_\delta, s_\delta^2$ can be chosen to reflect prior knowledge of these items (from other studies?). OR values of s_α^2 and s_δ^2 can be chosen to be large to reflect “ignorance.”

$$p(\theta, \alpha, \delta) = p(\theta_1) \cdots p(\theta_n) p(\alpha_1) \cdots p(\alpha_p) p(\delta_1) \cdots p(\delta_p)$$
Priors for IRT parameters

- \(\theta_i \sim N(0, 1) \)
- \(\delta_j \sim N(m_\delta, s_\delta^2) \)
- \(\alpha_j \sim N(0, \infty)(m_\alpha, s_\alpha^2) \)

Values of \(m_\alpha, s_\alpha^2, m_\delta, s_\delta^2 \) can be chosen to reflect prior knowledge of these items (from other studies?).
Priors for IRT parameters

- $\theta_i \sim N(0, 1)$
- $\delta_j \sim N\left(m_\delta, s^2_\delta\right)$
- $\alpha_j \sim N(0, \infty)\left(m_\alpha, s^2_\delta\right)$

Values of $m_\alpha, s^2_\alpha, m_\delta, s^2_\delta$ can be chosen to reflect prior knowledge of these items (from other studies?).

OR values of s^2_α and s^2_δ can be chosen to be large to reflect "ignorance."
Priors for IRT parameters

- $\theta_i \sim N(0, 1)$
- $\delta_j \sim N(m_\delta, s_\delta^2)$
- $\alpha_j \sim N(0, \infty) (m_\alpha, s_\alpha^2)$

Values of m_α, s_α^2, m_δ, s_δ^2 can be chosen to reflect prior knowledge of these items (from other studies?). OR values of s_α^2 and s_δ^2 can be chosen to be large to reflect "ignorance."

\[
p(\theta, \alpha, \delta) = p(\theta_1) \cdots p(\theta_n)p(\alpha_1) \cdots p(\alpha_p)p(\delta_1) \cdots p(\delta_p)
\]
The posterior distribution

- The posterior distribution for IRT parameters

\[p(\theta, \alpha, \delta | Y_1, \ldots, Y_n) \]
The posterior distribution

- The posterior distribution for IRT parameters

\[p(\theta, \alpha, \delta|Y_1, \ldots, Y_n) \]

- Too complicated (not a simple Beta(\(\kappa_1, \kappa_2\)))
The posterior distribution for IRT parameters

\[p(\theta, \alpha, \delta | Y_1, \ldots, Y_n) \]

- Too complicated (not a simple Beta(\(\kappa_1, \kappa_2\)))
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
The posterior distribution

- The posterior distribution for IRT parameters
 \[p(\theta, \alpha, \delta | Y_1, \ldots, Y_n) \]

- Too complicated (not a simple Beta(\(\kappa_1, \kappa_2\)))

- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.

- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.
The posterior distribution for IRT parameters

\[p(\theta, \alpha, \delta | Y_1, \ldots, Y_n) \]

- Too complicated (not a simple Beta(κ₁, κ₂))
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.
 - Open source (free!).
The posterior distribution

- The posterior distribution for IRT parameters
 \[p(\theta, \alpha, \delta | Y_1, \ldots, Y_n) \]

- Too complicated (not a simple \(\text{Beta}(\kappa_1, \kappa_2) \))

- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.

- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.
 - Open source (free!).
 - Can be called from other software (R, SAS, Stata).
BUGS code for IRT

```plaintext
model{
    for (i in 1:n){
        for (j in 1:p){
            Y[i, j] ~ dbern(prob[i, j])
            logit(prob[i, j]) <- alpha[j]*(theta[i] - delta[j])
        }
        theta[i] ~ dnorm(0.0, 1.0)
    }

    for (j in 1:p){
        delta[j] ~ dnorm(m.delta, pr.delta)
        alpha[j] ~ dnorm(m.alpha, pr.alpha) I(0, )
    }
    pr.delta <- pow(s.delta, -2)
    pr.alpha <- pow(s.alpha, -2)
}
```
Outline

1. Bayesian Inference
2. Item Response Theory
3. Bayesian Item Response Theory
4. Longitudinal Bayesian Item Response Theory
Easy to change BUGS code to account for longitudinal data.
Longitudinal Bayesian Item Response Theory

- Easy to change BUGS code to account for longitudinal data.
- For examples, see paper “BUGS Code for Item Response Theory.”
Easy to change BUGS code to account for longitudinal data.
For examples, see paper “BUGS Code for Item Response Theory.”
Join Paul’s workgroup.